Crystal Chemistry in the System $\mathrm{MSbO}_{3}{ }^{*}$

H. Y-P. HONG, J. A. KAFALAS and J. B. GOODENOUGH
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173

Received July 5, 1973

Abstract

Cubic, disordered phases of the compounds $\mathrm{MSbO}_{3}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Tl}$, and Ag$)$ have been investigated. KSbO_{3} is readily synthesized in the disordered, cubic structure at high pressure, and the other isomorphic compounds were obtained by ion exchange. The structures of NaSbO_{3} and AgSbO_{3}, which have space group $\operatorname{Im} 3$, were solved by X-ray single-crystal analysis. The structures contain an essentially rigid SbO_{3} subarray consisting of pairs of edge-shared octahedra sharing common corners. Within this subarray, face-shared octahedra form $\langle 111\rangle$ tunnels that intersect at the origin and body center of the unit cell, and the M^{+}ions are randomly distributed over two positions within these tunnels. Ordered, cubic phases have the primitive-cubic space group Pn 3 . The two M positions are different for Na^{+}and for Ag^{+}ions. At one of the Ag^{+}wion positions, the $\mathrm{Ag}-\mathrm{O}$ bond length is only $2.26 \AA$, consistent with the gray-black color of AgSbO_{3}. Deformation of the $4 d^{10} \mathrm{Ag}^{+}$-ion core by $4 d-5$ s hybridization appears to be induced by $\mathrm{Ag}-\mathrm{O}$ covalent bonding. This conclusion is compatible with the observation that ion exchange is reversible for all compounds but AgSbO_{3}. Several properties of these compounds are compared with the super ionic conductors $\mathrm{M}_{2} \mathrm{O} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3} \beta$-alumina.

I. Introduction

Unlike the $\mathrm{M}^{+} \mathrm{NbO}_{3}$ and $\mathrm{M}^{+} \mathrm{TaO}_{3}$ compounds, the $\mathrm{M}^{+} \mathrm{SbO}_{3}$ compounds do not form structures having $180^{\circ} \mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ linkages, presumably because this is inhibited by covalency (1). Thus KSbO_{3} does not form the cubic perovskite structure. At atmospheric pressure it generally has the rhombohedral ilmenite structure. However, Spiegelberg (2) reported synthesizing two cubic phases of KSbO_{3} by annealing for 3 wk at $1000^{\circ} \mathrm{C}$. One of these was primitive, with space group Pn3. The other was body-centered, but Spiegelberg was unable to determine its space group.
In the primitive-cubic KSbO_{3}, pairs of SbO_{6} octahedra share common edges to form $\mathrm{Sb}_{2} \mathrm{O}_{10}$ clusters (2). These clusters share corners to form the network shown in Fig. 1. The network contains empty tunnels of face-shared octahedra that run parallel to the $\langle 111\rangle$ directions and intersect at the center of the front face in Fig. 1. This origin is itself a large octahedral interstice, and along any $\langle 111\rangle$ direction there are three additional

[^0]octahedral positions between the origin and its body-center equivalent. Each of the shared faces along the tunnels consists of either O_{1} or O_{2}

Fig. 1. The cubic SbO_{3} matrix found by Spiegelberg (2) for cubic KSbO_{3} having the space group Pn 3 and ordered \mathbf{K}^{+}-ion positions.
oxygen atoms. The order of the faces is $\mathrm{O}_{1}-\mathrm{O}_{2}-$ $\mathrm{O}_{2}-\mathrm{O}_{1}$, and the triangular area of an O_{1} face is somewhat larger than that of an O_{2} face. The primitive unit cell contains $\mathrm{K}_{12} \mathrm{Sb}_{12} \mathrm{O}_{36}$, and the K^{+}ions are ordered within the octahedral sites of these tunnels: eight in $\mathrm{O}_{1}-\mathrm{O}_{2}$ octahedra along four tetrahedral directions from the origin, and four in $\mathrm{O}_{2} \mathrm{O}_{2}$ octahedra along the remaining four directions.

The body-centered cell is closely related to the primitive unit cell. A body-centered-cubic $I 23$ phase containing a network similar to the one in Fig. 1 has been reported (3) for $\mathrm{La}_{4} \mathrm{ORe}_{6} \mathrm{O}_{18}$. In this structure an oxygen is located at the origin and four La^{3+} ions occupy $\mathrm{O}_{1}-\mathrm{O}_{2}$ octahedra in $[1,1,1],[\overline{1}, \overline{1}, 1],[\overline{1}, 1, \overline{1}],[1, \overline{1}, \overline{1}]$ directions. It is therefore reasonable to assume that the bodycentered form of KSbO_{3} contains the SbO_{3} network of Fig. 1 with the \mathbf{K}^{+}ions disordered over the octahedral sites of the tunnels. This assignment gives space group Im3.

The possibility of alkali-ion exchange was suggested by the cubic KSbO_{3} structures. The tunnels of face-shared octahedra running parallel to the $\langle 111\rangle$ directions are not completely occupied, so high alkali-ion conductivity may be anticipated, provided the M^{+}ion is small enough to move through the O_{2} faces. Since the $\mathrm{O}_{2}-\mathrm{O}_{2}$ and $\mathrm{O}_{1}-\mathrm{O}_{1}$ octahedra are flattened, making relatively open O_{1} and O_{2} faces, the structure also suggests that the alkali-ion conductivity may be comparable to that of sodium β-alumina, $\mathrm{Na}_{2} \mathrm{O} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3}$. Therefore, in addition to the structure refinements for several MSbO_{3} compounds, we compare their properties with those of β-alumina.

II. Preparation

The cubic forms of KSbO_{3} were prepared from the ilmenite form in a high-pressure "belt" apparatus (4) capable of developing 90 kbar and equipped with an internal graphite heater. The ilmenite phase was subjected to pressures in excess of 20 kbar and then to a temperature of $700^{\circ} \mathrm{C}$ for 30 min . The specimen was subsequently quenched to room temperature before the pressure was released. This treatment normally yielded the disordered, body-centered form $\operatorname{Im} 3$ of cubic KSbO_{3}. Subsequent heat treatment $\left(1200^{\circ} \mathrm{C}\right.$ for 16 hr) of this form at atmospheric pressure yielded the ordered Pn 3 form.
RbSbO_{3} and TlSbO_{3} were prepared from the products of stoichiometric amounts of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$
or $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$ air-fired at $900^{\circ} \mathrm{C}$. The products were encapsulated in gold foil and subjected to the desired pressure in the belt apparatus. The temperature was raised to $900^{\circ} \mathrm{C}$ for 30 min and quenched before the pressure was released. At $20 \mathrm{kbar}, \mathrm{RbSbO}_{3}$ was obtained in the ordered Pn3 form. Considerably higher pressure gave the disordered $\operatorname{Im} 3$ form. Pressures in excess of 20 kbar yielded a cubic TlSbO_{3} phase having a doubled cell edge. Oscillation and Weissenberg pictures of a single crystal showed a face-centered-cubic cell with diffraction symmetry $m 3$, which indicates space group $F 23$ or Fm3.

Attempts to prepare $\mathrm{NaSbO}_{3}, \mathrm{AgSbO}_{3}$ and LiSbO_{3} by the same high-pressure technique gave, respectively, an ilmenite, a pyrochlore, and an orthorhombic phase. However, we have been able to prepare each of these compounds in the body-centered $\operatorname{Im} 3$ phase by an ion-exchange method. A cubic KSbO_{3} phase was mixed with molten $\mathrm{MNO}_{3}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{Rb}, \mathrm{Tl}$, or Ag$)$ in about $1: 10$ molar ratios for a few hours. In each case, the K^{+}ions appeared to be completely replaced by the M^{+}ions, since the X -ray powder pattern showed significant changes in the cell parameters (see Table IV) and the final cell parameter was independent of the initial compound: KSbO_{3} or TlSbO_{3}, for example. Except for AgSbO_{3}, the process is reversible. If one of the other MSbO_{3} phases is mixed with molten KNO_{3}, for example, the $\operatorname{Im} 3 \mathrm{KSbO}_{3}$ phase is recovered and has the initial cell size.

Structure determinations of NaSbO_{3} and AgSbO_{3} were made on single crystals prepared from single crystals of TlSbO_{3} by ion exchange in molten NaNO_{3} and AgNO_{3}, respectively. The single crystals of TlSbO_{3} were selected from the powder product of a high-pressure reaction (20 kbar at $700^{\circ} \mathrm{C}$ for 30 min) of the product of an $800^{\circ} \mathrm{C}$ reaction of $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and $\mathrm{Sb}_{2} \mathrm{O}_{3}$.

III. Structure

Weissenberg photographs of single crystals of NaSbO_{3} and AgSbO_{3}, prepared from TlSbO_{3} by ion exchange, showed they were cubic, but with the low symmetry $m 3$. Systematic absences were observed for $h+k+l=2 n+1$, consistent with space groups $I 23, I 2_{1} 3$ and $\operatorname{Im} 3$.

X-Ray intensity measurements of threedimensional data were taken to $2 \theta=60^{\circ}$ with a GE XRD-5 diffractometer using Zr -filtered MoK α radiation at a 5° takeoff angle. Each peak
height was counted for 10 sec , and backgrounds were counted for 10 sec at $\pm 2^{\circ}$ in 2θ off the peak. The Lorentz, polarization and ϕ-angle absorption corrections were applied. Both crystals were about 0.2 mm cube, and three-dimensional absorption corrections were considered not necessary.

A three-dimensional Patterson map was calculated and interpreted on the basis of space group $\operatorname{Im} 3$. As anticipated from the strong similarity between the powder patterns of primitive and body-centered KSbO_{3} as well as from the ease of ion exchange, the SbO_{3} network appears to be similar to Fig. 1, which was identified for the primitive-cubic KSbO_{3} structure. Therefore, the Sb^{5+}-ion and O^{2-}-ion positions obtained by Spiegelberg (2) for the Pn3 form of KSbO_{3} were used for the initial refinement based on $\operatorname{Im} 3$. The least-squares program gave a reliability factor $R=0.17$ for NaSbO_{3} and $R=$ 0.18 for AgSbO_{3}. From the calculated structure factors based on this model, a Fourier map for NaSbO_{3} revealed two Na^{+}-ion positions at (x, x, x): a larger electron density near $x=\frac{1}{8}$ and a lower electron density at $x=\frac{1}{4}$. There was zero electron density at $(0,0,0)$, the center of the front face in Fig. 1. The Fourier map for AgSbO_{3} also gave two Ag^{+}-ion positions at (x, x, x) : a smaller electron density for x approaching $\frac{1}{8}$ and a stronger about midway in the interval $\frac{1}{8}<x<\frac{1}{4}$. With these atomic positions and anisotropic temperature factors, a few refinement cycles reduced the reliability factors to $R=0.07$ for NaSbO_{3} for all 238 reflections and $R=0.08$ for AgSbO_{3} for all 138 reflections. Refinements based on the space groups $I 23$ and $I 2_{1} 3$ both gave
higher R factors and unrealistic temperature factors. Therefore, the space group $\operatorname{Im} 3$ was confirmed. The scattering factors used for K , $\mathrm{Sb}^{5+}, \mathrm{O}$ are those published (5) with anomalous dispersion coefficients for Mo radiation (6). The final atomic positions, occupancy factors and anisotropic temperature factors are shown in Table I for NaSbO_{3}, in Table II for AgSbO_{3}. The bond distances for both compounds are shown in Table III.

It is instructive to locate the positions of the M^{+}ions relative to the O_{1} and O_{2} faces along a $\langle 111\rangle$-axis tunnel. In NaSbO_{3}, the normalized distance from an O_{1}^{2-} ion at $(0.356,0,0)$ to a Na^{+} ion at (x, x, x) is

$$
\begin{align*}
D_{1} / a & =\left[(x-0.356)^{2}+x^{2}+x^{2}\right]^{1 / 2} \\
& =\left(3 x^{2}-0.712 x+0.1267\right)^{1 / 2}, \tag{1}
\end{align*}
$$

which gives a minimum separation ($a=9.3775 \AA$, Table IV)

$$
\begin{equation*}
D_{1, \min }=2.726 \AA \text { at } x=0.1187 \tag{2}
\end{equation*}
$$

the center of an O_{1} face. Similarly, the normalized distance from an O^{2-} ion at $(0,0.334,0.287)$ is

$$
\begin{align*}
D_{2} / a & =\left[x^{2}+(x-0.334)^{2}+(x-0.287)^{2}\right]^{1 / 2} \\
& =\left(3 x^{2}-1.242 x+0.1939\right)^{1 / 2} \tag{3}
\end{align*}
$$

which has a minimum value

$$
\begin{equation*}
D_{2, \min }=2.40 \AA \text { at } x=0.207, \tag{4}
\end{equation*}
$$

the center of an O_{2} face. Since the ionic $\mathrm{Na}-\mathrm{O}$ distance is $2.42 \AA$, it is apparent that the Na^{+}ions should move along the tunnels with a relatively small activation energy. Moreover, from Table I, the Na_{1} position is located at $x=0.123$, which places it near the center of an $\mathrm{O}_{1}-\mathrm{O}_{2}$ octahedron.

TABLE I
Atomic Posicions and Thermal Parameters of NaSbO_{3}

Atom: Position:	Sb		
Occupancy			
factor:		$\quad 12(e) \quad$	O_{1}
:---:			

TABLE II
Atomic Positions and Thermai. Parameters of AgSbO_{3}

Atom: Position: Occupancy factor:	Sb $12(e)$	O_{1} $\mathrm{i} 2(d)$	O_{2} $24(g)$	Ag_{1} $16(f)$	Ag_{2} $16(f)$
				$0.33(3)$	$0.44(2)$
x	$0.8393(4)$	$0.371(4)$	0	$0.111(1)$	$0.184(1)$
y	0	0	$0.296(7)$	$0.111(1)$	$0.184(1)$
z	$\frac{1}{2}$	0	$0.291(4)$	$0.111(1)$	$0.184(1)$
β_{11}	$0.0007(4)$	$0.002(4)$	$0.009(5)$	$0.013(2)$	$0.012(1)$
β_{22}	$0.0025(5)$	$0.006(5)$	$0.05(1)$	$0.013(2)$	$0.012(1)$
β_{33}	$0.0028(5)$	$0.002(4)$	$0.008(5)$	$0.013(2)$	$0.012(1)$
β_{12}	0	0	0	0	$0.006(1)$
β_{13}	0	0	0	0	$0.006(1)$
β_{23}	0	0	$0.012(9)$	0	$0.006(1)$

TABLE III
Bond Distances (\AA) of NaSbO_{3} and AgSbO_{3}

	NaSbO_{3}	AgSbO_{3}
Octahedron around $\mathbf{S b}^{5+}$		
$\mathrm{Sb}-\mathrm{O}_{1} 2 \times$	2.027	1.936
$\mathrm{Sb}-\mathrm{O}_{2} 2 \times$	1.949	2.279
$2 \times$	1.996	2.006
Nearest O^{2-} neighbors		
$\mathrm{O}_{1}-\mathrm{O}_{1} 1 \times$	2.692	2.421
$\mathrm{O}_{1}-\mathrm{O}_{2} 4 \times$	2.864	3.002
$\mathrm{O}_{1}-\mathrm{O}_{2} 2 \times$	3.202	2.881
$\mathrm{O}_{1}-\mathrm{O}_{2} 2 \times$	2.701	2.828
$\mathrm{O}_{2}-\mathrm{O}_{2} 4 \times$	2.774	2.866
Neighbors of Na^{+}	Neighbors of $\mathbf{A g}^{+}$	
$\mathrm{Na}_{1}-\mathrm{O}_{1} 3 \times 2.730$	$\mathrm{Ag}_{1}-\mathrm{O}_{1} 3 \times 2.858$	
$\mathrm{Na}_{1}-\mathrm{O}_{2} 3 \times 2.760$	$\mathrm{Ag}_{1}-\mathrm{O}_{2} \mathbf{3} \times 2.644$	
$\mathrm{Na}_{2}-\mathrm{O}_{2} 6 \times 2.650$	$\mathrm{Ag}_{2}-\mathrm{O}_{1} \mathbf{3} \times 3.014$	
$\mathrm{Na}_{1}-\mathrm{Na}_{1} 3 \times 2.303$	$\mathrm{Ag}_{2}-\mathrm{O}_{2} 3 \times 2.260$	
$\mathrm{Na}_{1}-\mathrm{Na}_{1} 3 \times 3.257$	$\mathrm{Ag}_{1}-\mathrm{Ag}_{2} 3 \times 2.935$	
$\mathrm{Na}_{1}-\mathrm{Na}_{2} 2 \times 2.094$	$\mathrm{O}_{1}-\mathrm{O}_{1} 4.950$ (triangle)	
$\mathrm{O}_{1}-\mathrm{O}_{1} 4.761$ (triangle)	$\mathrm{O}_{2}-\mathrm{O}_{2} 3.910$ (triangle)	
$\mathrm{O}_{2}-\mathrm{O}_{2} 4.447$ (triangle)		

It is displaced from the position $x=0.127$, where $D_{1}=D_{2}$, toward the origin-presumably because of electrostatic interactions between Na^{+}ions at neighboring Na_{1} positions within the tunnelsto give three $\mathrm{Na}_{1}-\mathrm{O}_{1}$ distances of $2.73 \AA$ and three $\mathrm{Na}_{1}-\mathrm{O}_{2}$ distances of $2.76 \AA$. From the
relative intensities of the electron densities at positions Na_{1} and Na_{2}, it appears that a Na^{+}ion at a Na_{2} position inhibits occupancy of the nearneighbor $\mathrm{O}_{1}-\mathrm{O}_{2}$ sites on opposite sides of it. Moreover, any electrostatic forces between Na^{+} ions produce a zero mean Na_{2} displacement, and

TABLE IV
Lattice Constants of MSbO_{3}
Polymorphs with Space
Group Im3

Compound	$a(\AA)$
$\mathrm{AgSbO}_{3}{ }^{a}$	$9.404(3)$
LiSbO_{3}	$9.465(8)$
$\mathrm{NaSbO}_{3}{ }^{a}$	$9.378(3)$
KSbO_{3}	$9.563(8)$
RbSbO_{3}	$9.698(8)$
TlSbO_{3}	$19.30(1)$

[^1]all $\mathrm{Na}_{2}-\mathrm{O}_{2}$ distances are $2.65 \AA$. Figure 2a gives a schematic representation of the random $\mathrm{Na}^{+}-$ ion distribution.

In AgSbO_{3}, on the other hand, the Ag^{+}ions

Fig. 2. Schematic representation of the eight〈111〉 channels branching from the origin to the neighboring body-center positions: (a) NaSbO_{3} and (b) AgSbO_{3}. The O_{1} and O_{2} octahedral-site faces perpendicular to the channels are represented by straight lines. Possible distributions of \mathbf{M}^{+}ions over the \mathbf{M}_{1} and $\mathbf{M}_{\mathbf{2}}$ positions are also indicated.
are not located at or near the centers of the $\mathrm{O}_{2}-\mathrm{O}_{2}$ or $\mathrm{O}_{1}-\mathrm{O}_{2}$ octahedra. Since

$$
\begin{align*}
& D_{1} / a=\left(3 x^{2}-0.742 x+0.1376\right)^{1 / 2} \tag{5}\\
& D_{2} / a=\left(3 x^{2}-1.176 x+0.1729\right)^{1 / 2} \tag{6}
\end{align*}
$$

and $a=9.4038 \AA$, it follows that

$$
\begin{align*}
& D_{1, \min }=2.849 \AA \text { at } x=0.124, \tag{7}\\
& D_{2, \min }=2.258 \AA \text { at } x=0.196 . \tag{8}
\end{align*}
$$

Therefore, the Ag_{2} position at $x=0.184$ is located close to an O_{2} face and forms an unusually short $\mathrm{Ag}-\mathrm{O}$ bond of only $2.260 \AA$. It would appear that this strong bond traps the Ag^{+}ion, hindering its transfer to the $\mathrm{O}_{2}-\mathrm{O}_{2}$ octahedral site at $x=0.25$. At least such an explanation would account for the zero electron density at $x=0.25$ and the inability to exchange Ag^{+}ions reversibly.

In AgSbO_{3}, the SbO_{3} matrix is deformed so as to give much smaller $\mathrm{O}_{2}-\mathrm{O}_{2}$ than $\mathrm{O}_{1}-\mathrm{O}_{1}$ separations, as can be seen from Eqs. (7) and (8). In fact, $D_{1}=D_{2}$ at $x=0.081$, which is well inside the large octahedral sites of all O_{1} ions. The Ag_{1} positions at $x=0.111$ are also inside, as can be seen from Eq. (7). Since the $\mathrm{Ag}_{2}-\mathrm{O}_{2}$ distances are strikingly shorter than the $\mathrm{Ag}_{1}-\mathrm{O}_{2}$ distances, the Ag^{+}ions should occupy preferentially the Ag_{2} positions. However, the $\mathrm{Ag}_{2}-\mathrm{Ag}_{2}$ separation across a common $\mathrm{O}_{2}-\mathrm{O}_{2}$ site is so short that electrostatic $\mathrm{Ag}^{+}-\mathrm{Ag}^{+}$interactions can be expected to inhibit occupancy of both positions. Therefore, the $12 \mathrm{Ag}^{+}$ions per unit cell can be distributed preferentially among only 8 of the 16 Ag_{2} positions. For an infinile Ag_{2}-site preference energy, the electron-density ratio for the two sites would be $\mathrm{Ag}_{1} / \mathrm{Ag}_{2}=\frac{1}{2}$. From Table II, a ratio $\mathrm{Ag}_{1} / \mathrm{Ag}_{2}=\frac{3}{4}$ is observed, indicating a finite $\mathrm{Ag}_{2}-$ site preference energy. This leads to the random Ag^{+}-ion distribution shown schematically in Fig. 2b. An Ag_{1} position at $x=0.111$ suggests that $\mathrm{Ag}^{+}-\mathrm{Ag}^{+}$pair interactions within a tunnel have been strong enough to displace one Ag^{+}ion from an Ag_{2} to an Ag_{1} position, but that the interactions between ions at Ag_{1} positions have kept $x>0.081$, the position where $D_{1}=D_{2}$.

The Ag^{+}ions at Ag_{1} positions appear to be ionically bound, those at Ag_{2} positions to be covalently bound to three O_{2} ions. Such a variation in $\mathrm{Ag}-\mathrm{O}$ bonding is characteristic of $\mathrm{Ag}^{+}-$ ion salts. Where the oxygens have orbitals
available for strong coordinate covalence, there a $4 d-5$ s hybridization may be induced on the Ag^{+} ions. Such hybridization changes the shape of the $4 d^{10}$ core from a sphere to an ellipsoid, thereby allowing stronger $\mathrm{Ag}-\mathrm{O}$ bonding along the shorter axis, or axes, of the ellipsoid by reducing the extension of the core-core repulsive forces. In black $\mathrm{Ag}_{2} \mathrm{O}$, linear $\mathrm{O}-\mathrm{Ag} \mathrm{O}$ bonding produces $\mathrm{Ag}-\mathrm{O}$ bond lengths of only $2.05 \AA$. Each O^{2-} ion has four near-neighbor Ag^{+}ions in tetrahedral coordination, and $s p^{3}$ hybridization at the oxygen is coupled to $s d_{\sigma}$ hybridization at the silver to allow strongly covalent bonding. In white AgClO_{3}, on the other hand, the oxygen atoms use all their $2 s 2 p$ orbitals to bond preferentially with the chlorine atoms, so no $4 d-5 s$ hybridization is induced on the Ag^{+}ions and the $\mathrm{Ag}-\mathrm{O}$ separations vary from 2.47 to $2.55 \AA$. $\mathrm{Ag}-\mathrm{O}$ bond lengths of intermediate size are common. Yellow $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, for example, has an $\mathrm{Ag}-\mathrm{O}$ separation of $2.30 \AA$. Interestingly, the color of the silver salts may be well correlated with the $\mathrm{Ag}-\mathrm{O}$ separation R. For $R>2.4 \AA$, the compounds are white, and for $R<2.25 \AA$ the compounds are black. AgSbO_{3}, which contains an $R=2.25 \AA$, is gray-black. Compounds having $R=2.30-2.34$ are yellow or red.

Interpretation of the color changes with bond length proceeds as follows. White compounds have a large ($\gtrsim 2.8 \mathrm{eV}$) energy gap E_{g} between the valence and conduction bands. Black compounds have an $E_{g} \leqq 1.7 \mathrm{eV}$. Therefore, the color changes indicate a band gap that decreases with increasing strength of the bond. This variation is just opposite to that experienced in covalent elements crystallizing in the diamond structure. In general, stronger bonding (shorter bond lengths) increases the gap between the mean energies of the occupied bonding orbitals and the empty antibonding orbitals. Therefore, it is difficult to understand the color changes in the silver salts unless the top of the valence band is composed of nonbonding core orbitals-the $4 d$ or hybridized ($4 d-5 s$) orbitals at the Ag^{+}ions-rather than the bonding $\mathrm{O}^{2-}: 2 p$ orbitals. Since hybridization raises the $4 d$ levels relative to the $5 s$ levels, it should decrease the energy gap between the top of the $4 d$-like bands and the bottom of the 5 s-like bands, as illustrated schematically in Fig. 3. Therefore, if the top of the valence band is primarily $4 d$-like and reduction of the $\mathrm{Ag}-\mathrm{O}$ bond length requires greater $5 s$ hybridization, the energy gap E_{g} will decrease with decreasing $\mathrm{Ag}-\mathrm{O}$ bond length, as observed. Furthermore, a relatively small energy

Fig. 3. Schematic energy diagrams for Ag^{+}oxides: (a) long $\mathrm{Ag}-\mathrm{O}$ bonds, (b) short $\mathrm{Ag}-\mathrm{O}$ bonds $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$.
separation between $4 d$ core orbitals and $5 s$ orbitals is required for appreciable deformation of the core via hybridization. Silver appears to be particularly susceptible to such a deformation of its core.

In AgSbO_{3}, each oxygen forms two strongly covalent $\mathrm{Sb}-\mathrm{O}$ bonds. The $\mathrm{Sb}-\mathrm{O}_{1}-\mathrm{Sb}$ angle is only a little larger than 90°, and the remaining p_{x} orbital perpendicular to the plane of that angle does not extend into the M^{+}-ion tunnels. Therefore, ionic $\mathrm{Ag}-\mathrm{O}_{1}$ bond lengths are to be expected. The $\mathrm{Sb}-\mathrm{O}_{2}-\mathrm{Sb}$ angle, on the other hand, is somewhat larger than 120°, indicating strong hybridization of $s p^{3}$ orbitals at the O_{2} position. Moreover, the two remaining hybrid orbitals are directed into the tunnels where they can induce covalent $\mathrm{Ag}-\mathrm{O}$ bonding. Therefore, the short $\mathrm{Ag}_{2}-\mathrm{O}_{2}$ bonds are to be anticipated.

Several MSbO_{3} compounds having the cubic Im 3 structure have been prepared from KSbO_{3} by ion exchange. Table IV shows the lattice constants, obtained from both powder and singlecrystal X-ray data, for the various polymorphs having space group Im3. With the exception of LiSbO_{3}, the lattice constants scale with the M^{+}-ion radii. The highly ionic, large ions $\mathrm{K}^{+}, \mathrm{Tl}^{+}$ and Rb^{+}can be expected to occupy the $\mathrm{O}_{1}-\mathrm{O}_{2}$ and $\mathrm{O}_{2}-\mathrm{O}_{2}$ sites, as does the Na^{+}ion, whereas the small Li^{+}ion may tend to occupy a position in or near an O_{2} face, as does the Ag^{+}ion. The presence of ionic Li^{+}ions in octahedral-site faces would expand the cubic lattice parameter relative to the value extrapolated from $\mathrm{RbSbO}_{3}, \mathrm{KSbO}_{3}$ and NaSbO_{3}. That a similar expansion is not found in AgSbO_{3} is attributed to the core deformation resulting from $\mathrm{Ag}-\mathrm{O}$ covalent bonding, which induces $4 d-5 s$ hybridization at the Ag^{+}ions.

IV. Comparisons with $\boldsymbol{\beta}$-Alumina

Of the 26 octahedral tunnel sites per primitive unit cell, only 12 are occupied by M^{+}ions. Therefore, excellent three-dimensional conductivity can be anticipated. Our data provide the following comparisons between the MSbO_{3} compounds and the so-called super ionic conductor β alumina:

1. In both, the M^{+}ions can be ion-exchanged in molten salts and the exchanges are reversible, except for AgSbO_{3} which can be only partially exchanged. In silver β-alumina (7), the shortest $\mathrm{Ag}-\mathrm{O}$ distance is $2.424 \AA$, which is large enough to be primarily ionic, whereas in AgSbO_{3} the shortest $\mathrm{Ag}-\mathrm{O}$ distance $2.260 \AA$ is small enough to be primarily covalent. Moreover, the reduced band gap introduced by this covalence enhances the probability of doping the crystal, thereby introducing electronic as well as ionic charge carriers.
2. Both LiSbO_{3} and $\mathrm{Li}_{2} \mathrm{O} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3}$ have lattice parameters anomalously larger than predicted from extrapolation of the parameters for the other M^{+}ions.
3. In both, M^{+}ions only partially occupy the available M positions. Sodium β-alumina contains four $\mathrm{Na}_{1}-\mathrm{O}_{2}$ distances greater than $2.71 \AA$ (8), whereas NaSbO_{3} has six $\mathrm{Na}_{2}-\mathrm{O}_{2}$ distances at $2.65 \AA$. These distances are all larger than the sum of the ionic radii. Moreover, in $\mathrm{Na}_{2} \mathrm{O}$ $11 \mathrm{Al}_{2} \mathrm{O}_{3}$ the Na^{+}ions must pass through a common octahedral-site edge, whereas in NaSbO_{3} they pass through octahedral-site faces. Therefore, we may anticipate comparable ionic mobilities in the two structures.
4. In β-alumina, the M^{+}ions are constrained to two-dimensional motion, whereas in MSbO_{3} they may move in three dimensions, the $\langle 111\rangle$ tunnels intersecting at common octahedral sites at the origin. Thus the Na^{+}-ion transport mechanism is similar to the Ag^{+}-ion diffusion in $\mathrm{RbAg}_{4} \mathrm{I}_{5}$, where the Ag^{+}ions partially occupy a threedimensional network of tetrahedra sharing common faces (9). Similar diffusion paths exist in other silver halides and chalcogenides (10-14).
5. Surprisingly, structure refinements of sodium
β-alumina indicate about 29% excess sodium (7). Similarly, our intensity data indicate an excess sodium concentration of 28.7% in nominal NaSbO_{3}. Nevertheless, electrical neutrality is maintained in both compounds. The location and charge-neutrality mechanism of the excess sodium has not been identified in either compound.
6. Preliminary ac measurements indicate that the ionic conductivity of NaSbO_{3} compares favorably with that found for $\mathrm{Na}_{2} \mathrm{O} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3}$.
7. It is difficult to prepare dense ceramic speciments of β-alumina that do not develop leaks. It is also difficult to prepare dense ceramics of metastable NaSbO_{3}, since not pressing is confined to the temperature interval $T<500^{\circ} \mathrm{C}$. A more fundamental difficulty is that ceramic NaSbO_{3} is slowly attacked by molten sodium. Nevertheless, the transport data demonstrate that "skeleton" structures of the Im3 type (here the SbO_{3} matrix forms the skeleton) promise to be important for fast-ion transport.

Acknowledgment

We thank C. H. Anderson, Jr. and D. M. Tracy for technical assistance.

References

1 J. B. Goodenough and J. A. Kafalas, J. Solid State Chem., in press.
2. P. Spiegelberg, Ark. Kemi 14A, 1 (1940).
3. J. M. Longo and A. W. Sleight, Inorg. Chem. 7, 108 (1968).
4. H. T. Hall, Rev. Sci. Inst. 31, 125 (1960).
5. D. T. Cromer and J. T. Waber, Acta Crystallogr. 18, 104 (1965).
6. D. T. Cromer, Acta Crystallogr. 18, 17 (1965).
7. C. R. Peters, M. Bettman, J. W. Moore, and M. D. Glick, Acta Crystallogr. Sect. B 27, 1826 (1971).
8. W. L. Roth, J. Solid State Chem. 4, 60 (1972).
9. S. Geller, Science 157, 310 (1967).
10. L. W. Strock, Z. Phys. Chem. Abt. B 25, 441 (1934).
11. L. W. Strock, Z. Phys. Chem., Abt. B 31, 132 (1936).
12. P. Rahlfs, Z. Phys. Chem., Abt. B 31, 157 (1936).
13. S. Hoshino, J. Phys. Soc. Jap. 7, 560 (1952).
14. B. Reuter and K. Hardel, Z. Anorg. Allg. Chem. 340, 168 (1965).

[^0]: * This work was sponsored by the Department of the Air Force.

[^1]: ${ }^{a}$ Were obtained from GE XRD single-crystal diffractometer, the rest were obtained from powder diffractometer.

